Data Mining

(0 review)
Free
Data Mining

DATA MINING

Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the “knowledge discovery in databases” process, or KDD.

The term is a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence, machine learning, and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate.

The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps.

The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.

PROCESS

The Knowledge Discovery in Databases (KDD) process is commonly defined with the stages:

(1) Selection

(2) Pre-processing

(3) Transformation

(4) Data Mining

(5) Interpretation/Evaluation.

It exists, however, in many variations on this theme, such as the Cross Industry Standard Process for Data Mining (CRISP-DM) which defines six phases:

(1) Business Understanding

(2) Data Understanding

(3) Data Preparation

(4) Modeling

(5) Evaluation

(6) Deployment

or a simplified process such as (1) pre-processing, (2) data mining, and (3) results validation.

Polls conducted in 2002, 2004, 2007 and 2014 show that the CRISP-DM methodology is the leading methodology used by data miners. The only other data mining standard named in these polls was SEMMA. However, 3–4 times as many people reported using CRISP-DM. Several teams of researchers have published reviews of data mining process models and Azevedo and Santos conducted a comparison of CRISP-DM and SEMMA in 2008.[16]

Pre-processing

Before data mining algorithms can be used, a target data set must be assembled. As data mining can only uncover patterns actually present in the data, the target data set must be large enough to contain these patterns while remaining concise enough to be mined within an acceptable time limit. A common source for data is a data mart or data warehouse. Pre-processing is essential to analyze the multivariate data sets before data mining. The target set is then cleaned. Data cleaning removes the observations containing noise and those with missing data.

Data mining

Data mining involves six common classes of tasks:

  • Anomaly detection (Outlier/change/deviation detection) – The identification of unusual data records, that might be interesting or data errors that require further investigation.
  • Association rule learning (Dependency modelling) – Searches for relationships between variables. For example, a supermarket might gather data on customer purchasing habits. Using association rule learning, the supermarket can determine which products are frequently bought together and use this information for marketing purposes. This is sometimes referred to as market basket analysis.
  • Clustering – is the task of discovering groups and structures in the data that are in some way or another “similar”, without using known structures in the data.
  • Classification – is the task of generalizing known structure to apply to new data. For example, an e-mail program might attempt to classify an e-mail as “legitimate” or as “spam”.
  • Regression – attempts to find a function which models the data with the least error.
  • Summarization – providing a more compact representation of the data set, including visualization and report generation.

Results validation

An example of data produced by data dredging through a bot operated by statistician Tyler Viglen, apparently showing a close link between the best word winning a spelling bee competition and the number of people in the United States killed by venomous spiders. The similarity in trends is obviously a coincidence.

Data mining can unintentionally be misused, and can then produce results which appear to be significant; but which do not actually predict future behaviour and cannot be reproduced on a new sample of data and bear little use. Often this results from investigating too many hypotheses and not performing proper statistical hypothesis testing. A simple version of this problem in machine learning is known as overfitting, but the same problem can arise at different phases of the process and thus a train/test split – when applicable at all – may not be sufficient to prevent this from happening.

Course Features

  • Lectures 0
  • Quizzes 0
  • Duration 50 hours
  • Skill level All levels
  • Language English
  • Students 0
  • Certificate No
  • Assessments Self
Curriculum is empty.

Reviews

Average Rating

0
0 rating

Detailed Rating

5 stars
0
4 stars
0
3 stars
0
2 stars
0
1 star
0
Free

Leave A Reply

Your email address will not be published. Required fields are marked *