Association Rules

(0 review)
Free
Association Rules

ASSOCIATION RULES

Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness. Based on the concept of strong rules, Rakesh Agrawal et al. introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets.

For example, the rule {ONION, POTATOAS} = {BURGER} { o n i o n s , p o t a t o e s } ⇒ { b u r g e r } {\displaystyle \{\mathrm {onions,potatoes} \}\Rightarrow \{\mathrm {burger} \}}

found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, they are likely to also buy hamburger meat. Such information can be used as the basis for decisions about marketing activities such as, e.g., promotional pricing or product placements.

In addition to the above example from market basket analysis association rules are employed today in many application areas including Web usage mining, intrusion detection, Continuous production, and bioinformatics. In contrast with sequence mining, association rule learning typically does not consider the order of items either within a transaction or across transactions.

Course Features

  • Lectures 0
  • Quizzes 0
  • Duration 50 hours
  • Skill level All levels
  • Language English
  • Students 0
  • Certificate No
  • Assessments Self
Curriculum is empty.

Reviews

Average Rating

0
0 rating

Detailed Rating

5 stars
0
4 stars
0
3 stars
0
2 stars
0
1 star
0
Free

Leave A Reply

Your email address will not be published. Required fields are marked *